Development of Particle Swarm Optimization Based Algorithm for Graph Partitioning
ثبت نشده
چکیده
From the review, it is studied that the min cut k – partitioning problem is a fundamental partitioning problem and is NP hard also. Most of the existing partitioning algorithms are heuristic in nature and they try to find a reasonably good solution. These algorithms falls in move – based category in which solution is generated iteratively from an initial solution applying move to the recent solution. Most frequently, these move – based approaches are combined with stochastic algorithms In this chapter, we have developed Multilevel Recursive Discrete Particle Swarm Optimization (MRDPSO) technique which integrates a new DPSO based refinement approach and an efficient matching based coarsening scheme for solving GPP. 6.2 Discrete Particle Swarm Optimization
منابع مشابه
Development of PSPO Simulation Optimization Algorithm
In this article a new algorithm is developed for optimizing computationally expensive simulation models. The optimization algorithm is developed for continues unconstrained single output simulation models. The algorithm is developed using two simulation optimization routines. We employed the nested partitioning (NP) routine for concentrating the search efforts in the regions which are most like...
متن کاملMulti Objective Inclined Planes System Optimization Algorithm for VLSI Circuit Partitioning
In this paper multi objective optimization problem for partitioning process of VLSI circuit optimization is solved using IPO algorithm. The methodology used in this paper is based upon the dynamic of sliding motion along a frictionless inclined plane. In this work, modules and elements of the circuit are divided into two smaller parts (components) in order to minimize the cutsize and area imbal...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملA particle swarm optimization algorithm for minimization analysis of cost-sensitive attack graphs
To prevent an exploit, the security analyst must implement a suitable countermeasure. In this paper, we consider cost-sensitive attack graphs (CAGs) for network vulnerability analysis. In these attack graphs, a weight is assigned to each countermeasure to represent the cost of its implementation. There may be multiple countermeasures with different weights for preventing a single exploit. Also,...
متن کامل